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THE PROBLEM OF THE STRESSED STATE OF AN 
ELASTIC CONE WEAKENED BY C RACKSt 

G .  Y a .  P O P O V  

Odessa 

(Rece&ed 8 December 1998) 

Using the method of discontinuous solutions, the problem of the stressed state of an elastic cone, weakened by cracks, is reduced 
to a system of one-dimensional integro-differential equations, specified on parts of the conical surfaces where the cracks are 
situated. There can be an arbitrary number of such surfaces and parts. The proposed scheme is realized using the example of 
the problem of the torsion of a cone, weakened by a semi-infinite conical crack, subjected to the action of an arbitrary load 
(including the application of a centre of rotation at the cone apex. An exact solution of this problem is obtained and a formula 
is given for the stress intensity factor. Since there is no solution in the literature of the problem of the stressed state of a cone 
without cracks due to the action of a centre of rotation, a solution is also given of this problem using the new integral transformation 
obtained here. It can also be used to solve problems of the stressed state of cones truncated along spherical surfaces. It follows 
from the problem of the stressed state of a cone, loaded with centre of rotation at the apex, which is solved here, that with type 
of loading the stress is everywhere equal to zero inside the cone, and hence a conical crack does not weaken the cone. © 2000 
Elsevier Science Ltd. All fights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  I T S  R E D U C T I O N  T O  A 
S Y S T E M  O F  O N E - D I M E N S I O N A L  I N T E G R O - D I F F E R E N T I A L  E Q U A T I O N S  

A n  elas t ic  c i r cu la r  c o n e  (0 < r < 0% - ~ r  < ~ < "rr, 0 < 0 < to) wi th  Po i s son ' s  r a t io  lz a n d  shea r  m o d u l u s  
G,  is l o a d e d  wi th  a n  a rb i t r a ry  s ta t ic  l oad  o n  the  sur face  0 = to, i.e. ('r0r = "rr, ~'0, - -  "r,) 

Ioe(r,°~,cP),xr(r,°3,qO, x~(r,o~,9) =llY,(r,~),A(r,~),f3(r,~l (1.1) 

i n c l u d i n g  c o n c e n t r a t e d  ac t ions  at  t he  c o n e  apex.  T h e  c o m p o n e n t s  of  the  d i s p l a c e m e n t  a n d  stress fields 
in  t he  c o n e  d u e  to these  ac t ions  will  be  a s s u m e d  k n o w n  a n d  we will d e n o t e  t h e m  by  a ze ro  superscr ip t .  
I n s i d e  the  cone ,  a l o n g  the  sur faces  0 = toj, aj <~ r <~ bj, toj < to (j = 1, 2 . . . . .  N )  t h e r e  a re  cracks,  t he  
edges  o f  wh ich  0 = t o j - 0  a n d  0 = toj + 0 a re  a s s u m e d t o  be  u n l o a d e d .  I t  is r e q u i r e d  to d e t e r m i n e  the  
stress d i s t r i b u t i o n  in  the  e las t ic  c o n e  a n d  to  de r ive  f o r m u l a e  for  the  stress i n t ens i t y  factor .  

A s  p rev ious ly  [1], i n s t e a d  of  the  d i s p l a c e m e n t s  u,, u0, u~ we i n t r o d u c e  the  f u n c t i o n s  

u(r,O,~p)=ru r, v ( r ,O,~p)=rs inOu o, w(r ,O,~p)=rsinOu~ 

a n d  the i r  F o u r i e r  t r a n s f o r m a n t s  

(1.2) 

Ilun(r,O),v (r,O), w,,<r,0)ll= i 
n = 0 , + 1 , + 2  .. . .  

U u(r,O,~p),v (r,0,~p), w(r,0,q~)IId~ 
2~ exp(imp) (1.3) 

a n d  we t ake  u(r, O, ~), ®(r, O, ~), O(r, O, ~)  or  un(r, 0), ®n(r, 0), f~n(r, 0) as the  f u n d a m e n t a l  u n k n o w n s  
in  t e r m s  o f  wh ich  the  s t resses  a re  expressed  by the  f o r m u l a e  

(2G)  -I oo,, = ~toO,, - r-2u'~ - r-2 sin-2 0Iv ,  sin 0 + in w,  sin 0] 

~t o = (1 - la)(I - 21.t) -I (1.4) 

x,.,i =G[rcosecO(r-2o,,)" * r-2u: ] 

G - I r ~ , ,  = f2 n + 2 r  -I sin -20 [ inv  ,, - w,, cos0]  
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The functions ~ and wn must be taken from formulae (3.6) or (3.7) from [1]. Here  and below a prime 
denotes a derivative with respect to r (the first variable), while a dot denotes a derivative withrespect  
to 0 (the second variable). 

Hence, the problem reduces to finding the functions un(r, 0), ®n(r, 0), l~n(r, 0). We will seek them in 
the form 

tl0 0 LL ju,,e~ + Y~ jO~,~, + Y. jf~, (1.5) 
= + j=o j=o 

o o Here Un, On, fl°n are known functions, which define the stress and displacement fields in the cone 
without friction (including that due to point forces at its apex), while for ju,, j On, j D~ ( j  = 1, 2 . . . . .  N), 
which determine the discontinuous solution of  Lame's equations for a conical defect (crack), situated 
on the surface 0 = toj, we can use formulae (2.4)-(2.6) from [1], giving them preceding subscripts j, 
taking to = toj and replacing the integration sections [0,R] by [aj,bj]. For the jumps in these functions 
and their derivatives normal to the defect formulaet  (3.4) and (3.5) from [1] remain true, though in 
these equations we must put ('r,n) = (cro,~) = (%n) = 0 and assume to = toj. The functions jl)n(r,O ) a n d  
jwn(r,0), corresponding to these discontinuous solutions, are obtained from (3.6) and (3.7) from [1] with 
similar modifications. 

When writing formulae (1.5) we used the idea of treating the boundary of the cone 0 = to = too as 
an additional defect (a crack), which enables us to regard the terms 0un, 0On, 0f~n as discontinuous 
solutions of  Lam6's equations for this defect, where a0 = 0 and b0 = oo. If we assume that the edge of 
this defect (the crack) is similarly loaded, the jumps in the stresses will be equal to zero, as for the 
specified cracks, while the jumps for the fundamental functions, which define the stress and displacement 
fields, will be determined by the same formulae as for the cracks, but in which we must put j = 0. 

A s  can be seen, the problem will be solved if we obtain the transformants of the jumps in the 
displacements, i.e. (jun), (ix)n), (jwn) (j = 1,2,. . . ,  N). We will obtain the equations for determining them 
by realizing the condition that the crack edges should be stress-free, and also boundary conditions (1.1), 
written in terms of  Fourier transformants, i.e. (Bjk is the Kronecker delta) 

GO, ̀ (r, CO t - O) = ~tofl,, (r) ,  Xrn (r, COt - O) = ~)/of2n (r) ,  "C~n (r,  COt - O) = 8tO f3,, ( r )  
(1.6) 

a t < ~ r ~  < b  t, l=0 ,1 ,2  .... N 

In order to avoid unnecessary complication, we will realize these conditions for the axisymmetrical 
case, i.e. when n = 0. In this case, realization of, for example, the third condition of (1.6) leads to the 
following system of integro-differential equations 

(tWo)tg t°- I P(tWo) ~0 ,0,COt sinCOt +2c°sCOr(tWo) x 
at 

aCOta ((:i) pr )l dp ~ I,j[ ss ( Pr ) x 0 --_,O.COt - - -  "sinco, S P(iw0) (1)o _-,O, co i + 
O=t.Oi p j=0 aj 

+ 2ctgcoj(jw°)~*°(aCOja Lpr'O'COJ e=a), ~dP + 2ctgCO t oS j=0T" atl [P(jWo)"x 

r a r 
× *O(p,X, CO,)+2ctgcoi(jWo)-ff'o~'-co*J-,x, COjlqsinxdx= • CO j kP Jl 
: rsinCO/[S,0f.~0(r)_,c~(r, CO,)], a t <~ r<~ b t, 1=0,1 .... N (1.7) 

G 

The asterisk on the summation sign denotes that the term withj  = 1 is eliminated. 

flu (2.4) from [1] there should be (On) and not (O,)  in the first term on the fight-hand side. This correction should be introduced 
into the last term in formula (2.5) as well; in addition, there should be Jnl instead of (n). In formula (3.3) of [1] there should 
be a plus sign after (un) (it was omitted). 
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We obtain a similar system after realizing the first and second conditions and (1.6), where it turns 
out to be compatible with the jumps (t~0) (jUo) and (l = 0.1 . . . . .  N). 

Hence, the problem splits into the problem of the twisting of a cone, which can be reduced to system 
of integro-differential equations (1.7) with respect to the jumps ~.w0), and the problem of the 
axisymmetrical deformation of this cone, which reduces to a similar system of integro-differential 
e(luations in the jumps0~ag0) and (jus), where, on the right-hand side of this system, we have, instead of 
'r~o,(r, oh), the stresses tro(r, oat) and'ro,(r,~ot) resulting from the concentrated action at the cone apex. In 
this case there can only be a force acting along the cone axis. 

A solution of this problem was obtained by MicheU (see [2, 3]). In the case of twisting by a point 
force at the cone apex there can only be a centre of rotation, and the quantity "r°o,p(r, tot) must be taken 
as the solution of the corresponding problem. Since there is no solution of this problem in the literature 
we will derive its solution. An attempt to proceed in the same way as Michell (see [2, 3]) did not lead 
to this objective, so we therefore used the idea [4] of replacing the cone in question by the frustum of 
a cone (e ~< r < ~), loading it on the spherical surface r = e with a suitable load and then letting e 
approach zero. The realization of this idea required the solution of the problem of expanding an arbitrary 
function in the section [8,to] in eigenfunctions of the regular Sturm-Liouville problem 

T"(O) + ctg0T'(0) - [3. + ]/4 + m 2 cosec 2 O]T(O) = 0, 8 < 0 < tO 

IT'(0) - ctg 0T(0)]o=s. ~ = 0 
(1.8) 

from which we must transfer to the case 8 = 0 required here (the irregular case) by taking the limit. 
We will derive the solution of this problem especially as this expansion is necessary in order to solve 

more complex boundary-value problems for the frustum of a cone. 

2. T H E  P R O B L E M  OF E X P A N D I N G  AN A R B I T R A R Y  C O N T I N U O U S  
F U N C T I O N  IN O R T H O G O N A L  CONE F U N C T I O N S  

The solutions of the differential equation in (1.8) are the cone functions [6] 

r(e) = 

By making the replacement y(0) = ~ ] ~ T ( 0 )  we can reduce the Sturm-Liouville problem to the 
form [5] 

y"(O)- {3- + q(O)}y(O) = 0, ~i < 0 < tO (q(0)sin 2 0 = m 2 - ~ )  
(2.1) 

y(8) cos Ot + y'(8) sin ¢t = 0, y(tO) cos 15 + )"(tO)sin 13 = 0 

where 

sin(ix,13) = _l-_l---sin(&tO), cos(ot,13)= - 3 
2fl~ 

~2 = sin 2 8 + 9COS2 
4 

cos(8,tO) 

(2.2) 

Following the well-known scheme in [5], we proceed from the functions 

• 0 (e, 3-) = 47ff6p"(cos  e), Xo(O, x) = 4 --6t2  (cos e) 

v = - I/~ + i'4-~ 
(2.3) 

and we calculate their Wronksian, taking into account formula 3.4(25) from [6]. We obtain 

W(tP0, X0) = tOo = -F,,, (v), r,n (v) = 22" (m + v)r'[(m + v) / 2] x 

x F[~  + (m + v) / 2] { (v - m)F[(v - m) / 2]F[~ + (v - m) / 2] }-I 
(2.4) 

We further construct the functions 
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[X(0,X) [ 4sin(oF~ (0,o)) 

d 
F~"(0, ~) = P:(cos0)t~Q7 - o;"(cos0)~d", t, = si.  ~ -  cos~ 

and their derivatives 

{ oll ° ' II} x/~-~Fv" (0, o))I 2 II 4sin o)Fv'(0,o)) 

The Wronksian of these functions is 

(2.6) 

A " '  = lsPv"loQ v' - lsQ~'lo)Pv" 

We thereby construct the function (I)(0, h). 
Suppose hk are the eigenvalues of problem (2.1). They must be found from the equation 

A¢") ! p.ml 0 "  t r~,n t p"  = v, -- S v, o--v , - '8~v, 'o  v, =0, v, - ~ + i ~  (2.7) 

from which we obtain the equality 

i t , "  [, p." ]-1 " [loQ~,: ]-1 (2.8) a' v~ [,(o v, = lsQvk 

According to this scheme [5], to obtain the required expansion it only remains to calculate the residue 
of the function (I)(0, X) when h = hk and obtain Kk, which is equal to 

K~. = z ( o , x , )  _ 4 ; iE6nd . t ' ~  
(p(e, xk) ~ t o l s P v  ~ (2.9) 

If we take into account the fact that 

do)(X) _ do) dv 1 do) 1 do) 
= (2.10)  

d;L dv dX =-2i-v/E dv 2v+l  dv 

we obtain the required expansion [5]in the form 

F,;, (O, o))( , +l),~ :(o)= ~. 18 Q;:',. , / ; ~  " 2v . ~, E" (O',o))flsinO" f(O')dO" 
*=o l(oQ~/~F,,,(vk)Am* S (2.11) 

Amk 

We take the limit as ~ ---) 0 in this expansion. If in this case we take into account the asymptotic form 
of the Legendre functions in the neighbourhood of unity, then in Eq. (2.7) the second term will make 
the main contribution as ~ ---> 0 and hence, in the limit, Eq. (2.7) becomes 

loP~' k = ( v ,  - m + i)Pv~ +, (cos(o) =- (v,. + 2)cos  o)Pv'~ (cos(o) = 0 (2.12) 

The first equality follows from 3.8(19) in [6]. On the same basis, after differentiating (2.7) with respect 
to v (or vk), the main contribution will be made by a term of the form 

= l~aP~" i av~L=~,. (2.13)  A,.t. (co), A .,k (co) 
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and hence, as 8 -~ 0 in (2.11), Ant, can be replaced by the quantity from (2.13). If  we then use the fact 
that, as 8 - ~ ,  ~ (O,co) becomes l ~ , ~  P ~  (cos 0); expansion (2.11) becomes 

f(O)= - ~ Omt ((0)'~"0 P~ (COSO)~ ~ Pv#; (cosO')f(O')dO" 
k=O 0 

¢rmt (C0) = (2Vt m -I + I)I,~Q;~ [A.,~(C0)F.,(Vk)] ; 0 ~< 0 ~< CO 

(2.14) 

where the quantities vk must be found from transcendental equation (2.12). 
We will give the asymptotic solution of  this equation for large values of  vk, using the asymptotic 

formula 3.9.1(2) from [6], retaining only the principal term. As a result, instead of  (2.12) we will 
have 

tgA =(m 2 + 2 + 3 V  k/2)[m 2 + (v  k +1)2] -I ctg¢O 

A = ( v  t + ~ ) c o - x l 4 + m x l 2  
(2.15) 

We further show that 

I tg[(vt + ~ ) ¢ 0 -  u /4 ] ,  m = 2 j  
tgA=[-ctg[(vt+~)tO-n/4], m = 2 j + l ;  j = O , I . . .  (2.16) 

Consider the case when tn = 2j + 1. We substitute expression (2.16) into (2.15) and, talcing into account 
the fact that, as vk --> o0 the right-hand side of  (2.15) tends to ak = 3(2vk)-" ctg o~, after obvious reduction 
using trigonometric functions we arrive at the equation 

tg[(v k + ~)Co] = - ( !  + at)(I - a t ) -I  

Its right-hand side approaches minus unity as vk ---> oo. Hence, we obtain the following asymptotic 
formula for the required vk 

V t = - ~ - ( - g / 4 + k g ) c o  -I, k = 0 , 1 , 2 . . .  

Using the same transformations a similar formula can also be derived for m ffi 2j. The formula obtained 
only holds for large values of  k. It is important to note that v0 = 1 for any m > 2 and m ffi 1. This 
follows directly from (2.12), if we take into account the fact that [6] 

P,~'(z) = O, m > n (2.17) 

while for the case m = 1 one must additionally take into account formulae 8.813 from [7]. 
If  we use formula (2.14) to expand the function f(O) = (sinO)-~g(O), introducing for the function 

g(O) its transformant 

~' sin OP~'~ (cose)g(O)dO = g* • (2.18) 
0 

we can write formula (2.14) in the form of an inversion formula for this transformant 

g(e) = - ~. am, ((o)g, P,~ (cosO) (2.19) 
k=0 

Consider the case when to = ~/2.  In this case the transformant equation (2.12) allows of the 
explicit solution vk = 2k - m  (using formula 3.4 (20) from [6]), and formulae (2.18) and (2.19) become 

y21c 
S sin 0~'~_,. (cos 0)g(e)d0 = gk 
0 

g(0) Y * " c = -  cr.a P~,_.,( os0)gk (2.20) 
k=m 
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, ( 4 k - 2 m + l ) F ( l + k - m ) F ( ~ + k - m )  

°"a' = 22mk!F(~ + k) 

Formulae (2.18)-(2.20) enable us to solve not only the problem of the loading of a cone with a centre 
of rotation at the apex, but also more-complex boundary-value problems for the frustums of cones. 

3. THE P R O B L E M  OF THE L O A D I N G  OF A CQNE WITH A C E N T R E  
OF ROTATION AT THE APEX 

As indicated at the end of Section 1, we first solve the following problem. The frustum of the cone 
8 ~< r < oo is loaded along the spherical surface (the end of the cone) with a torsional load, i.e. 

x~ l ,= t=as in0 ,  A--const, O<O<to (3.1) 

The 'torque, produced by this load, will be defined by the formula (compare with [8]) 

(l) 
M = 2 ~  2 J A sin 3 0d0 = 4rt~2AA~ 

0 

Ato = sin 2 C°2L ~ I - 13 (cos 2 to + cos to + I )] 

(3.2) 

It is required to determine the displacements and stresses in the frustum of the cone. 
The equation of the torsion of the frustum of the cone has the form [2, 3] 

2 • • ee  • (r %) + %  +ctg0u~,-cosec20u, =0, e<~ r<**, 0 < 0 < t o  (3.3) 

The stresses are expressed in terms of its solution by the formulae 

"c,~ = G r ( r - ; % ) ' ,  rsin0~0~ = Glou ~ (3.4) 

The operator lo is defined in (2.5) 
If we assume that the side surface of the cone is unloaded, the problem in question reduces to solving 

Eq. (3.3) with the boundary conditions 

[r(r-I%)' lr=~ = A G  -I sin0, 

lcou~ = O, e <~ r < ~ 

0 < 0 < t o  
(3.5) 

To solve boundary-value problem (3.3), (3.5) we will use integral transformation (2.18) and put 
m = 1 there. Using the standard scheme of the method of integral transformations, we obtain the solution 
of the problem in the form 

% ( r , e ) = - A e 2 k ~  ° " ~ k ~ l k L t o ) ( ~ v k  P. I ( c o s e )  
Gr = 2 + v ,  k r )  v, 

oJ 
Y* = J sin2 0PvJ, (cos0)d0 

0 

(3.6) 

We now take the limit as 8 ~ 0, simultaneously increasing the number A so that (cf. [4]) the torque 
(3.2) remains unchanged and equal to the torque at the centre of rotation M, i.e. we must have 

41tAe. 2 = MA~ I , e --~ 0 (3.7) 

If we take into account here the fact that v0 = 1, Pa~o(COS 0) = -s in  0, vk > v0, ~t0 = 2,4to, we obtain M 

M 
G % ( r ,  O) = 6--~-r2 an0(to)sin 0 (3.8) 
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In this case the stresses are 

M 
x,o(r, O) = - 2--~r3 fft0(co)sin 0, xo~(r, O) =- 0 (3.9) 

As can be seen, when a centre of rotation acts at the cone apex 0 < r < 0% I ~01 ~< ~r, 0 < 0 < to the 
stresses vanish not only on the side surface (0 = to), but also on any conical surface inside the cone, 
i.e. a cut in the cone along this surface does not weaken the cone. 

In the special case when to = ~-/2, formulae (3.8) and (3.9) take the form 

u~(r, 0)=--M~-M. sin0, x,~(r, 0)=-3~r3Sin0,  x~o=0 (3.10) 
• ~ r z  

4. THE EXACT S O L U T I O N  OF THE P R O B L E M  OF THE T O R S I O N  OF A 
CONE W E A K E N E D  BY AN I N F I N I T E  C O N I C A L  CUT 

By the discussion in Sections 1 and 3, this problem, including the case when there is a centre of rotation 
at the apex, reduces to a system of two (/=0,1) equations (1.7), in which we must put 

N=I,  a0=0, bo=**, al=R, bl=**, xgv(r, coj)=O, j=O,I  

and introduce the following notation for the unknown functions 

(]wo(r, to/))=•i(r), j =0, I; suppZo(r)=[O,**], suppz;(r)=[R,**] (4.1) 

We must then carry out transformations on the equations obtained, similar to those carried out 
previously [1] when obtaining Eq. (4.9) from [1] which are based on the two important relationst 

/'J [ r  ) r--~-~ ~ ZJ(P) • ° ( r  ~dp 

t~ ! F g ry~.(t)= [k-lt k, t< l  
[ - ( k + i ) - ; t  -k-I, t > l '  

k=i ,  2 .... 

(4.2) 

where 

cO(t. o. = (cos (cos 
t=O 2 

4'I(,) = I -(k + I),'. t < J 
[kt -k-~, t > O' 

k=0,1,2 .... 

(4.3) 

The correctness of the first of relations (4.2) can be proved by integrating by parts, while the second 
can be checked directly. After carrying out these operations and making the replacements r = xR, 
p = ~R we arrive at the following system of equations 

ctg°a°z°(Rx'+x-~[i (~1 ~, (~]z,(R~)---~]=f(x) 

i,,o + (~;) ~ J o 

(4.4) 

0 ~< x< .o ,R  ~< x<oo 

gl'here are some printing errors in the relations in [1]. They are corrected here. 
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Here 

f ( x )  = G -I sin(coo)Rxf.ao(Rx) 

• (I, 2ctgcojkJ~,_ZctgcojkJ])+4ctgcojk~:); kit =sm cojkjt - 

~(2) = Pk (coscot), JAj = 
_- 2 I I J .  

cot) ek ( os %) I, 
~.(4) = " "Ikt I 
'~.il "= 

j =  0, I; I=0, I 

o~j 

J Pk( c°sx)sinxdx . . . . . .  (4.5) 
0 

j = 0 ,  1; l=0,1 

In order to apply a Mellin transformation to these equations, we extend the second equation from 
(4.4) over the whole interval (0, oo). Since the left-hand side of this equation, by construction, is the 
function Bo, xx0,(Rx, toa), B,, = sin (olRG -1, which us unknown in the interval 0 ~< x ~< 1, by connecting 
it to the right-hand side of the equation in question we can carry out the necessary extension. After 
applying the Mellin transformation we obtain instead of (4.4) 

[ctg co o - sKoo(s)]X°(s) - sKol (s)X + (s) = F(s) 

[ctgcoj - sKi t(s)lX+(s) - sKlo(s)X° (s) = T-(s) 
(4.6) 

where 

X°(s) 11 

K.o)U 

~o(Rx) 

f(x) 

kit(x) 

x-,-Idx, X+(s)=]  ' gl(Rx)x"-]dx 
I 

(4.7) 

I 

T-(s) = B ~  x ~ ( R x ,  CO t )x'~-~dx 
0 

The plus (minus) superscripts indicate functions that are analytical in the left (fight) half-plane of 
the complex variable s. respectively. If we find X°(s) from the first equation of (4.6) and substitute the 
value obtained into the second equation, we arrive at the following Riemann boundary-value problem 
(9) (the functional Wiener-Hopf equation [10]), specified on the imaginary axis 

K (s)X+ (s) = T-(s)+ H(s)F(s) (4.8) 

where 

K(s) = sKi t(s) ctgco] - sKot(s)H(s) 

H(s) = Kto(S)[S -I ctgco o - Koo(s)] 
(4.9) 

In order to solve Riemann's problem (4.8), we need to factorize [9, 10] the function K(s), and 
for this we need to know its behaviour as s -~ oo. A method of investigating the asymptotic 
form for K~(s) ( j  = 0, 1: m = 1, 2, 3, 4) as s -~ oo was proposed in [1]. In particular, it was shown 
that 

( I )  , 2Ko ( s ) - - c tg l ra+ O(s  -I), s ~ *,, (4.10) 

However, this only holds when s tends to infinity, remaining on the imaginary axis (besides, this is 
sufficient for the results obtained in [1] to be correct). To refine the asymptotic form (4.10) we must 
sum the series 
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= ~.( ,  I I ) s in (2k+l )o  SO(s)_2S](s) S=(s) = 
~.=o k + l - s  k+s 2g 

/ ~ sin(2k+l)m ~ o S i n ( 2 k + l ) m  S°(s)= it , S I(s)= 
2 ,=_. . .  k+s , =  k + s  

which is contained in formula (5.6) from [1]. The series S°(s), after making the 
2 k + l  = m, is summed using formula 5.4.3 (4) from [11] and takes the form 

(4.11) 

replacement 

S°(s) = sin[(n - co)(2s - I)] cosec n(2s - I) 

while the series Sl(s), by formula 5.4.6 (1) from [11], takes the form 

(4.12) 

S ' ( s ) = ~  e-"S(l+e') dt (4.13) 
,~Tt o c h t - c o s 2 t o  

and according to the asymptotic expansion of  the Laplace tramformant [12] behaves at infinity as s -I. 
Bearing relations (4.11)-(4.13) in mind, we obtain the refined asymptotic form 

KJ~ (s) = ~ c t g  rts + cosec ~qsin(x - mj)g + O(s -n ), g = 2s - I. s --* .o (4.14) 

It can be shown that the additional term in (4.14) in fact decreases compared with (4.10,  and 
exponentially when s = icr, cr ~ oo. 

Using the same methods as in [1], taking into account the transformation and (4.11), it can be shown 
that all K~# (s) ( j  = 0, 1: m = 1, 2, 3, 4) are decreasing functions as s ~ oo, but when m = 1 they may 
contain terms that are bounded at infinity, as in (4.12), i.e. we can write 

K(s)=s[~ctgrL~+o(I)], Isl---~** (4.15) 

while the symbol o(1) contains terms which decrease exponentially at infinity i fs  approaches infinity, 
remaining on the imaginary axis, similar to the additional term in the asymptotic form (4.14) compared 
with (4.10). 

Hence, the coefficient of Riemann's problem (4.8) has the same asymptotic form as in [1], and hence 
one can use the same method to factorize it. However, in this case it is more convenient to use a different 
approach, based on the fact that in the problem solved in [1] when to = ~r/2 (a half-space) we must 
factorize the function 

= 

t,-=O 

4 ~=o O)fi! ~ j - ( s - l ) / 2  

(4.16) 

where 

L(s)= L+(s)L-(s), L+(s) = F ( ~ - s / 2 )  L-(s)= F ( l + s / 2 )  (4.17) 
F(I - s /2)  ' F ( ~  + s /2 )  

The last equality in (4.16) follows from formula 1.4(3) in [6]. 
Hence, in this case the factorization is carried out automatically, which was noted for the first time from 
other considerations in [13]. 

Using the properties of the gamma-function [6], we have the asymptotic form 

2L(s)=slg i +  , s ~ * *  

This enables us to factorize the coefficient of  Riemann's problem using the formula 

(4.18) 
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K(s) = K+(s)K-(s), K±(s) = lf(s)G+-(s) (4.19) 

where the function G(s) = L-l(s)K(s), which approaches unity as s = io- approaches +__oo by virtue of 
the asymptotic forms (4.15) and (4.18), can be factorized using the well-known formula [9.14] 

1 i" In[L-I(t)K(t)] ] 
G±(s)=exp +=---: S dt ,  Res>0  

L ,£~t -i*o I - - S  
(4.20) 

Carrying out standard operations using the factorization method [9, 15], bearing in mind, when using 
Liouville's theorem, the asymptotic form 

i f(s)  = O(s~), G~(s)= 1 +o(1), s--~** (4.21) 

and also the mechanical meaning of the required functions, we obtain the solution of Riemarm's problem 
(4.8) in the form 

X+(s) = [L+(s)G+(s)l-IQ+(s), T-(s) = L-(s)G-(s)Q-(s) (4,22) 

Hence, from (4.17) we obtain a formula for the required stresses along the extension of the cut 

| Y÷/** 

BcoX~o~(Rx, ¢01)= '---L-7. ~ Q-(s)L-(s)G-(s)x-"ds, 0<~x~<l, ~'>0 
Z~t "t-i** (4.23) 

The functions Q±(s) contained in (4.22) and (4.23) are found from the representation [9, 15] 

Q(s) = H(s)F(s)[L-(s)G-(s)] -L = Q+(s)- Q-(s) (4.24) 

and, for example, for the function Q-(s) we can obtain the formula [9, 10, 15] 

1 'i. Q(t)dt, Q-(ity)=~ij~.Q(i'~)d.¢ Q-(s)= ~gi t - s  x - f f  (4.25) 

Having formula (4.23) we can obtain the stress intensity factor 

Kill= lira 3121t(R-r)xa,(r, t o l ) = ~  lim 41-xx~(Rx ,  oa l) 
r---~ R-O x--~l-O 

(4.26) 

In order to take the limit we need to investigate the asymptotic form at infinity of the functions Q-(itr), 
and to do this, using representation (4.25) and the results from [16], we must know the asymptotic form 
of H-(i'r) as "r ---) 0% for which, by (4.9), we need to use the asymptotic form for Klo(S) taking 
transformation (4.11) into account. It has the same structure as (4.10) but only without the term 
ctg 'rrs. Taking this into account we find that H-(i'O = O('r -1) .r --~ oo. 

If we now assume that the load applied to the cone is such that "rQ(ir) approaches zero and satisfies 
the H61der condition there in the neighbourhood of 0% by well-known results [16, p. 270] we will 
have 

Q-(io)= +o , o---)T-~, C=-~-~_~Q(t)dt (4.27) 

Taking this asymptotic form into account, the integral in (4.23) can be split into terms, as in [1], 
and we can separate the principal part, which carries the root singularity. In this case, this will be the 
integral 

J(x)=2rci,t_i** s ' -  l~ '~-x2( l+~/ l -x2) /2  ~ "  
(4.28) 

which can be evaluated using the theorem of residues using formula 2.8(6) from [6]. 
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Taking the pr incipal  par t  of the integral  in (4.23) in the form (4.28), and taking the l imit of (4.26), 
we finally ob ta in  

G ~ v+j i** H(s)F(s)  as 
Kill = 2R sint01 ~,_~, l / l ( s )G- t ( s )  
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